Enabling Large-Scale Bayesian Network Learning by Preserving Intercluster Directionality
نویسندگان
چکیده
We propose a recursive clustering and order restriction (R-CORE) method for learning large-scale Bayesian networks. The proposed method considers a reduced search space for directed acyclic graph (DAG) structures in scoring-based Bayesian network learning. The candidate DAG structures are restricted by clustering variables and determining the intercluster directionality. The proposed method considers cycles on only cmax( n) variables rather than on all n variables for DAG structures. The R-CORE method could be a useful tool in very large problems where only a very small amount of training data is available. key words: Bayesian network, clustering, order restriction, search space reduction
منابع مشابه
DisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems
The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...
متن کاملDisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems
The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...
متن کاملLarge-scale regulatory network analysis from microarray data: modified Bayesian network learning and association rule mining
We present two algorithms for learning large-scale gene regulatory networks from microarray data: a modified informationtheory-based Bayesian network algorithm and a modified association rule algorithm. Simulation-based evaluation using six datasets indicated that both algorithms outperformed their unmodified counterparts, especially when analyzing large numbers of genes. Both algorithms learne...
متن کاملThe modeling of body's immune system using Bayesian Networks
In this paper, the urinary infection, that is a common symptom of the decline of the immune system, is discussed based on the well-known algorithms in machine learning, such as Bayesian networks in both Markov and tree structures. A large scale sampling has been executed to evaluate the performance of Bayesian network algorithm. A number of 4052 samples wereobtained from the database of the Tak...
متن کاملLearning Bayesian Network Structure using Markov Blanket in K2 Algorithm
A Bayesian network is a graphical model that represents a set of random variables and their causal relationship via a Directed Acyclic Graph (DAG). There are basically two methods used for learning Bayesian network: parameter-learning and structure-learning. One of the most effective structure-learning methods is K2 algorithm. Because the performance of the K2 algorithm depends on node...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEICE Transactions
دوره 90-D شماره
صفحات -
تاریخ انتشار 2007